Direct scattering transform of large wave packets

Rustam Mullyadzhanov, Andrey Gelash

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

We apply the Magnus expansion to the Zakharov–Shabat system, providing a basis for a systematic construction of high-order numerical schemes to solve the direct scattering problem of the integrable one-dimensional nonlinear Schrödinger equation. The presented numerical simulations of previously unreachable wave fields with up to 128 solitons employing second-, fourth-, and sixth-order schemes stresses the need for delicate numerics to identify the eigenvalues and especially phase coefficients. This approach lays the foundation for the study of large optical wave packets, providing fundamental information about their scattering data content and origin of various nonlinear effects.

Original languageEnglish
Pages (from-to)5298-5301
Number of pages4
JournalOptics Letters
Volume44
Issue number21
DOIs
Publication statusPublished - 1 Nov 2019

Keywords

  • NONLINEAR FOURIER-TRANSFORM
  • COMPUTATION
  • MODULATION
  • ALGORITHMS
  • TURBULENCE
  • SPECTRUM

Fingerprint

Dive into the research topics of 'Direct scattering transform of large wave packets'. Together they form a unique fingerprint.

Cite this