Abstract
The differential evolution algorithm is applied to solve the optimization problem to reconstruct the production function (inverse problem) for the spatial Solow mathematical model using additional measurements of the gross domestic product for the fixed points. Since the inverse problem is ill-posed the regularized differential evolution is applied. For getting the optimized solution of the inverse problem the differential evolution algorithm is paralleled to 32 kernels. Numerical results for different technological levels and errors in measured data are presented and discussed.
Original language | English |
---|---|
Pages (from-to) | 761-774 |
Number of pages | 14 |
Journal | Journal of Inverse and Ill-Posed Problems |
Volume | 28 |
Issue number | 5 |
Early online date | 1 Sep 2020 |
DOIs | |
Publication status | Published - 1 Oct 2020 |
Keywords
- differential evolution
- economy
- identifiability
- inverse problem
- optimization
- parameter identification
- PDE
- reconstruction of parameters
- regularization
- Solow model
- spatial Solow model
OECD FOS+WOS
- 1.01 MATHEMATICS