Deep laser cooling of atoms on narrow-line optical transitions in polarized fields: Scaling law

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review


The theoretical description of the kinetics of neutral atoms in the polarized light fields with all the atomic levels, the coherence, the recoil effect is both important and challenging problem. The first step toward understanding mechanisms of interaction between atoms and light was called quasi-classical approach. [1,2] It lies in the fact that the equations for the density matrix can be reduced to the Fokker-Planck equation for the Wigner function in the phase space. But the semiclassical approximation is inapplicable for investigating the cooling of atoms at clock transitions, because the quasiclassical parameter (the recoil frequency) is not small (in comparison with the natural line width). Later quantum methods were developed [3], for example, the secular approach which describes cooling and localization of atoms in the optical potential. Secular approximation fails high vibrational levels and for atoms in high vibrational states.

Original languageEnglish
Title of host publicationEuropean Quantum Electronics Conference, EQEC_2019
PublisherOSA - The Optical Society
ISBN (Electronic)9781557528209
Publication statusPublished - 1 Jan 2019
EventEuropean Quantum Electronics Conference, EQEC_2019 - Munich, United Kingdom
Duration: 23 Jun 201927 Jun 2019

Publication series

NameOptics InfoBase Conference Papers
VolumePart F143-EQEC 2019


ConferenceEuropean Quantum Electronics Conference, EQEC_2019
CountryUnited Kingdom


Dive into the research topics of 'Deep laser cooling of atoms on narrow-line optical transitions in polarized fields: Scaling law'. Together they form a unique fingerprint.

Cite this