Constant-adiabaticity ultralow magnetic field manipulations of parahydrogen-induced polarization: application to an AA'X spin system

Bogdan A. Rodin, James Eills, Román Picazo-Frutos, Kirill F. Sheberstov, Dmitry Budker, Konstantin L. Ivanov

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

The field of magnetic resonance imaging with hyperpolarized contrast agents is rapidly expanding, and parahydrogen-induced polarization (PHIP) is emerging as an inexpensive and easy-to-implement method for generating the required hyperpolarized biomolecules. Hydrogenative PHIP delivers hyperpolarized proton spin order to a substrateviachemical addition of H2in the spin-singlet state, but it is typically necessary to transfer the proton polarization to a heteronucleus (usually13C) which has a longer spin lifetime. Adiabatic ultralow magnetic field manipulations can be used to induce the polarization transfer, but this is necessarily a slow process, which is undesirable since the spins continually relax back to thermal equilibrium. Here we demonstrate two constant-adiabaticity field sweep methods, one in which the field passes through zero, and one in which the field is swept from zero, for optimal polarization transfer on a model AA′X spin system, [1-13C]fumarate. We introduce a method for calculating the constant-adiabaticity magnetic field sweeps, and demonstrate that they enable approximately one order of magnitude faster spin-order conversion compared to linear sweeps. The present method can thus be utilized to manipulate nonthermal order in heteronuclear spin systems.

Original languageEnglish
Pages (from-to)7125-7134
Number of pages10
JournalPhysical Chemistry Chemical Physics
Volume23
Issue number12
DOIs
Publication statusPublished - 28 Mar 2021

OECD FOS+WOS

  • 1.03 PHYSICAL SCIENCES AND ASTRONOMY
  • 1.04 CHEMICAL SCIENCES
  • 1.04.EI CHEMISTRY, PHYSICAL
  • 1.03.UH PHYSICS, ATOMIC, MOLECULAR & CHEMICAL

Fingerprint

Dive into the research topics of 'Constant-adiabaticity ultralow magnetic field manipulations of parahydrogen-induced polarization: application to an AA'X spin system'. Together they form a unique fingerprint.

Cite this