Abstract
This paper describes the application of Recurrent Neural Networks (RNN) for effectively detecting anomalies in time series data obtained from experimental study of the combustion and gasification of mechanically activated coal fuel in a thermal furnace. We train Recurrent Neural Networks (RNN) with Long Short-Term Memory (LSTM) units to learn the normal time series patterns and predict anomaly values. The resulting prediction errors between real and expected values are analyzed to give anomaly scores. To investigate the most suitable configuration of RNN and evaluate the effectiveness of the anomaly detection model, we used three datasets of real-world data that contain several types of anomalies. The developed RNN algorithm detected 9 out the 9 collective anomalies in the hold-out sample with one false positive anomaly event.
Original language | English |
---|---|
Article number | 012043 |
Number of pages | 5 |
Journal | Journal of Physics: Conference Series |
Volume | 1105 |
Issue number | 1 |
DOIs | |
Publication status | Published - 28 Nov 2018 |
Event | 34th Siberian Thermophysical Seminar Dedicated to the 85th Anniversary of Academician A. K. Rebrov, STS 2018 - Novosibirsk, Russian Federation Duration: 27 Aug 2018 → 30 Aug 2018 |
Keywords
- ACTIVATION