Chemistry of vinylidene complexes. XXV. Synthesis and reactions of binuclear µ-vinylidene RePt complexes containing phosphite ligands. Spectroscopic, structural and electrochemical study

Oleg S. Chudin, Victor V. Verpekin, Alexander A. Kondrasenko, Galina V. Burmakina, Dmitry A. Piryazev, Alexander D. Vasiliev, Nina I. Pavlenko, Dmitry V. Zimonin, Anatoly I. Rubaylo

Research output: Contribution to journalArticle

Abstract

Reactions of Cp(CO)2Re[dbnd]C[dbnd]CHPh with Pt[P(OR)3]4 (R = Pri, Et, Ph) gave binuclear μ-vinylidene complexes Cp(CO)2RePt(μ-C[dbnd]CHPh)[P(OR)3]2. Treatment of the previously synthesized Cp(CO)2Re(μ-C[dbnd]CHPh)Pt(PPh3)2 with triisopropylphosphite or triethylphosphite resulted in a stepwise substitution of PPh3 ligands, leading to the disubstituted Cp(CO)2RePt(μ-C[dbnd]CHPh)[P(OR)3]2 and monosubstituted Cp(CO)2RePt(μ-C[dbnd]CHPh)[P(OR)3](PPh3) (R = Pri or Et) species, while no triphenylphosphine ligand substitution in the reaction with P(OPh)3 occurs at all. The monosubstituted Cp(CO)2RePt(μ-C[dbnd]CHPh)[P(OR)3](PPh3) (R = Pri, Et, Ph) species were also obtained by reacting Cp(CO)2Re[dbnd]C[dbnd]CHPh with mixed-ligand complexes Pt(PPh3)3L (L = P(OPri)3, P(OEt)3, P(OPh)3). Reactions of Cp(CO)2RePt(μ-C[dbnd]CHPh)LL′ (L = L′ = P(OPri)3, P(OEt)3, P(OPh)3; L = P(OPri)3, P(OEt)3, P(OPh)3, L′ = PPh3) with Co2(CO)9 yield tricarbonyl vinylidene species Cp(CO)2RePt(μ-C[dbnd]CHPh)[P(OR)3](CO) (R = Pri, Et, Ph). The obtained compounds were characterized by IR and 1H, 13C, 31P NMR spectroscopy. The molecular structures of Cp(CO)2RePt(μ-C[dbnd]CHPh)[P(OPri)3]2, Cp(CO)2RePt(μ-C[dbnd]CHPh)[P(OPri)3](PPh3) and Cp(CO)2RePt(μ-C[dbnd]CHPh)[P(OPri)3](CO) were determined by X-ray diffraction study. The redox properties of the new complexes and their reactions of chemical oxidation were studied.

Original languageEnglish
Article number119463
JournalInorganica Chimica Acta
Volume505
DOIs
Publication statusPublished - 24 May 2020

    Fingerprint

Keywords

  • NMR
  • Platinum
  • Redox properties
  • Rhenium
  • Vinylidene complexes
  • X-ray diffraction

Cite this