Charge Photogeneration in Composites of Fluorinated Carbon Nanotubes and Semiconducting Polymer P3HT

Elena S. Kobeleva, Danil A. Nevostruev, Olga L. Krivenko, Mikhail N. Uvarov, Olga A. Gurova, Egor V. Lobiak, Alexay S. Berezin, Vladimir A. Zinovyev, Dmitriy E. Utkin, Konstantin M. Degtyarenko, Leonid V. Kulik

Research output: Contribution to journalArticlepeer-review

Abstract

Spectroscopic and photovoltaic properties of composites of purified and subsequently fluorinated single-walled carbon nanotubes (F-SWCNTs) with conjugated polymer poly(3-hexylthiophene) (P3HT) are tested. Adding cyclohexanone into o-dichlorobenzene solution of P3HT and F-SWCNTs significantly affects the composite morphology and promotes P3HT/F-SWCNT nanofilament formation, as evidenced from atomic force microscopy (AFM) images of spin-coated composite films. Also, nanofilament formation enhances quenching of P3HT photoluminescence by F-SWCNTs. The performance of P3HT-based organic photovoltaics (OPV) devices with separated semiconducting SWCNTs and F-SWCNTs as the acceptor component of the active layer is comparable. Light-induced electron paramagnetic resonance (EPR) signal intensity in P3HT/F-SWCNT composite films and frozen solutions grows with increase in F-SWCNT content, which is a signature of photoinduced electron transfer. Dramatic change in SWCNT electronic structure upon fluorination is also evidenced by UV–vis– near infra red optical absorption spectra, from which the bandgap of about 1.0 eV is derived for F-SWCNTs. Overall, the experimental results confirm that fluorination efficiently converts metallic SWCNTs into semiconducting ones, and F-SWCNTs can be used for as an electron acceptor component in OPV devices, in combination with polymer donors. Presently, the performance of P3HT/F-SWCNT devices is limited by F-SWCNT aggregation into bundles, which decreases P3HT/F-SWCNT interface area.

Original languageEnglish
Article number2000161
Number of pages8
JournalPhysica Status Solidi (B) Basic Research
Volume257
Issue number12
DOIs
Publication statusPublished - Dec 2020

Keywords

  • electron paramagnetic resonance
  • fluorination
  • optical spectroscopy
  • organic photovoltaics
  • poly(3-hexylthiophene)
  • single-walled carbon nanotubes
  • RECOMBINATION
  • DISPERSION
  • OPTICAL-PROPERTIES
  • BAND
  • P3HT/PCBM
  • CONJUGATED POLYMERS
  • SEPARATION
  • MORPHOLOGY

Fingerprint

Dive into the research topics of 'Charge Photogeneration in Composites of Fluorinated Carbon Nanotubes and Semiconducting Polymer P3HT'. Together they form a unique fingerprint.

Cite this