CHAPTER 2: High Pressure Crystallography: Elucidating the Role of Intermolecular Interactions in Crystals of Organic and Coordination Compounds

Research output: Chapter in Book/Report/Conference proceedingChapterResearchpeer-review

7 Citations (Scopus)

Abstract

Intermolecular interactions can be probed by varying pressure. The structures formed under selected temperature and pressure conditions, and the structural changes resulting from temperature and pressure variation, can provide clues to understanding the structure-forming role of various types of hydrogen bonds, stacking interactions, van der Waals interactions, etc. One can consider the following possible types of experiments. (1) Measuring the anisotropy of structural strain and the absolute value of compressibility. This can give valuable information on the absolute and relative strengths of various types of intermolecular interactions. Fine-tuning interactions by continuously changing intermolecular distances provides a unique possibility to quantitatively study structure-property relationships. (2) Following the structural transformations that are induced by increasing pressure. One can compare the pressure response of different polymorphs of the same compound, of chiral and racemic counterparts, of single- and multi-component crystals containing the same or related chemical species, or of selected series of compounds. The compression-decompression protocol - in particular the rate of increasing and decreasing pressure - the temperature, the choice of hydrostatic fluid, and the presence of other phases as potential seeds can influence the outcome of the transformation. (3) Crystallization of solids at high pressure. One can consider: (a) crystallization of solids originally dissolved in a liquid and (b) crystallization of compounds that are fluid at ambient pressure. (4) The effect of pressure on chemical transformations induced by temperature or light and chemical reactions induced by compression. These experiments contribute towards the understanding of the role of intermolecular interactions in solid-state reactivity.

Original languageEnglish
Title of host publicationUnderstanding Intermolecular Interactions in the Solid State
Subtitle of host publicationApproaches and Techniques
EditorsD Chopra
PublisherRoyal Society of Chemistry
Pages32-97
Number of pages66
Edition26
ISBN (Electronic)9781788010795
ISBN (Print)978-1-78801-079-5
DOIs
Publication statusPublished - 1 Jan 2019

Publication series

NameMonographs in Supramolecular Chemistry
Number26
Volume2019-January
ISSN (Print)1368-8642
ISSN (Electronic)2041-7144

Keywords

  • X-RAY-DIFFRACTION
  • EQUATION-OF-STATE
  • INDUCED PHASE-TRANSITIONS
  • III AMMINE COMPLEXES
  • DIAMOND-ANVIL CELL
  • INDUCED STRUCTURAL-CHANGES
  • CHARGE-DENSITY ANALYSIS
  • HYDROGEN-BOND NETWORKS
  • ACID CO-CRYSTALS
  • L-SERINE-III

Fingerprint

Dive into the research topics of 'CHAPTER 2: High Pressure Crystallography: Elucidating the Role of Intermolecular Interactions in Crystals of Organic and Coordination Compounds'. Together they form a unique fingerprint.

Cite this