Cell Dynamics in WOX5-Overexpressing Root Tips: The Impact of Local Auxin Biosynthesis

Maria S. Savina, Taras Pasternak, Nadya A. Omelyanchuk, Daria D. Novikova, Klaus Palme, Victoria V. Mironova, Viktoriya V. Lavrekha

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


Root stem cell niche functioning requires the formation and maintenance of the specific “auxin-rich domain” governed by directional auxin transport and local auxin production. Auxin maximum co-localizes with the WOX5 expression domain in the quiescent center that separates mitotically active proximal and distal root meristems. Here we unravel the interconnected processes happening under WOX5 overexpression by combining in vivo experiments and mathematical modeling. We showed that WOX5-induced TAA1-mediated auxin biosynthesis is the cause, whereas auxin accumulation, PIN transporters relocation, and auxin redistribution between proximal and distal root meristems are its subsequent effects that influence the formation of the well-described phenotype with an enlarged root cap. These findings helped us to clarify the role of WOX5, which serves as a local QC-specific regulator that activates biosynthesis of non-cell-autonomous signal auxin to regulate the distal meristem functioning. The mathematical model with WOX5-mediated auxin biosynthesis and auxin-regulated cell growth, division, and detachment reproduces the columella cells dynamics in both wild type and under WOX5 dysregulation.

Original languageEnglish
Article number560169
Number of pages13
JournalFrontiers in Plant Science
Publication statusPublished - 22 Oct 2020


  • auxin
  • EdU
  • image analysis
  • iRoCS toolbox
  • mathematical model
  • mitotic activity
  • RAM
  • WOX5

Fingerprint Dive into the research topics of 'Cell Dynamics in WOX5-Overexpressing Root Tips: The Impact of Local Auxin Biosynthesis'. Together they form a unique fingerprint.

Cite this