Abstract

We apply a cascaded training pipeline for the 3D U-Net to segment each brain tumor sub-region separately and chronologically. Firstly, the volumetric data of four modalities are used to segment the whole tumor in the first round of training. Then, our model combines the whole tumor segmentation with the mpMRI images to segment the tumor core. Finally, the network uses whole tumor and tumor core segmentations to predict enhancing tumor regions. Unlike the standard 3D U-Net, we use Group Normalization and Randomized Leaky Rectified Linear Unit in the encoding and decoding blocks. We achieved dice scores on the validation set of 88.84, 81.97, and 75.02 for whole tumor, tumor core, and enhancing tumor, respectively.

Original languageEnglish
Title of host publicationBrainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries - 7th International Workshop, BrainLes 2021, Held in Conjunction with MICCAI 2021, Revised Selected Papers
EditorsAlessandro Crimi, Spyridon Bakas
PublisherSpringer Science and Business Media Deutschland GmbH
Pages410-420
Number of pages11
ISBN (Print)9783031089985
DOIs
Publication statusPublished - 2022
Event7th International Brain Lesion Workshop, BrainLes 2021, held in conjunction with the Medical Image Computing and Computer Assisted Intervention, MICCAI 2021 - Virtual, Online
Duration: 27 Sep 202127 Sep 2021

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12962 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference7th International Brain Lesion Workshop, BrainLes 2021, held in conjunction with the Medical Image Computing and Computer Assisted Intervention, MICCAI 2021
CityVirtual, Online
Period27.09.202127.09.2021

Keywords

  • 3D U-Net
  • Brain tumor segmentation
  • Medical image segmentation

OECD FOS+WOS

  • 1.02 COMPUTER AND INFORMATION SCIENCES
  • 1.01 MATHEMATICS

Fingerprint

Dive into the research topics of 'Cascaded Training Pipeline for 3D Brain Tumor Segmentation'. Together they form a unique fingerprint.

Cite this