All-PM fibre laser with switchable pulsed regimes driven by electrochemically gated carbon nanotube saturable absorber

Yury Gladush, Aram Mkrtchyan, Daria Kopylova, Aleksey Ivanenko, Boris Nyushkov, Alexey Kokhanovskiy, Sergey Kobtsev, Albert G. Nasibulin

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

1 Citation (Scopus)

Abstract

Pulse lasing driven by a real saturable absorber (SA) in a fibre laser cavity is conditional on modulation characteristics determined by the nonlinear material and implementation geometry of the SA. Generally, these parameters can be only preset during the SA fabrication. For instance, modulation depth of a single-wall carbon nanotube saturable absorber (SWCNT-SA) sandwiched between fibre connectors is governed by its thickness [1]. Here we demonstrate electronic control of pulse lasing regimes in an all-PM fibre laser by using an original electrochemically gated in-line SWCNT-SA. Earlier it was shown that electric gating of graphene can alter its nonlinear optical properties [2], but for SWCNT, to the best of our knowledge, there were no such studies.

Original languageEnglish
Title of host publication2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728104690
DOIs
Publication statusPublished - 1 Jun 2019
Event2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019 - Munich, Germany
Duration: 23 Jun 201927 Jun 2019

Publication series

Name2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019

Conference

Conference2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
CountryGermany
CityMunich
Period23.06.201927.06.2019

Fingerprint

Dive into the research topics of 'All-PM fibre laser with switchable pulsed regimes driven by electrochemically gated carbon nanotube saturable absorber'. Together they form a unique fingerprint.

Cite this