Advanced nanomaterials for catalysis and energy: Synthesis, characterization and applications

Research output: Book/ReportBookResearchpeer-review

4 Citations (Scopus)

Abstract

Advanced Nanomaterials for Catalysis and Energy: Synthesis, Characterization and Applications outlines new approaches to the synthesis of nanomaterials (synthesis in flow conditions, laser electrodispersion of single metals or alloys on carbon or oxide supports, mechanochemistry, sol-gel routes, etc.) to provide systems with a narrow particle size distribution, controlled metal-support interaction and nanocomposites with uniform spatial distribution of domains of different phases, even in dense sintered materials. Methods for characterization of real structure and surface properties of nanomaterials are discussed, including synchrotron radiation diffraction and X-ray photoelectron spectroscopy studies, neutronography, transmission/scanning electron microscopy with elemental analysis, and more. The book covers the effect of nanosystems' composition, bulk and surface properties, metal-support interaction, particle size and morphology, deposition density, etc. on their functional properties (transport features, catalytic activity and reaction mechanism). Finally, it includes examples of various developed nanostructured solid electrolytes and mixed ionic-electronic conductors as materials in solid oxide fuel cells and asymmetric supported membranes for oxygen and hydrogen separation.

Original languageEnglish
PublisherElsevier
Number of pages587
ISBN (Electronic)9780128148082
ISBN (Print)9780128148075
DOIs
Publication statusPublished - 29 Aug 2018

OECD FOS+WOS

  • 1.03 PHYSICAL SCIENCES AND ASTRONOMY
  • 2.1 NANO-TECHNOLOGY
  • 2.07 ENVIRONMENTAL ENGINEERING
  • 2.04 CHEMICAL ENGINEERING

Fingerprint Dive into the research topics of 'Advanced nanomaterials for catalysis and energy: Synthesis, characterization and applications'. Together they form a unique fingerprint.

Cite this