Account of the baryonic feedback effect in γ -ray measurements of intergalactic magnetic fields

K. Bondarenko, A. Boyarsky, A. Korochkin, A. Neronov, D. Semikoz, A. Sokolenko

Research output: Contribution to journalArticlepeer-review

Abstract

Aims. Intergalactic magnetic fields in the voids of the large-scale structure can be probed via measurements of secondary γ-ray emission from γ-ray interactions with extragalactic background light. Lower bounds on the magnetic field in the voids were derived from the nondetection of this emission. It is not clear a priori what kind of magnetic field is responsible for the suppression of the secondary γ-ray flux: a cosmological magnetic field that might be filling the voids, or the field spread by galactic winds driven by star formation and active galactic nuclei. Methods. We used IllustrisTNG cosmological simulations to study the effect of magnetized galactic wind bubbles on the secondary γ-ray flux. Results. We show that within the IllustrisTNG model of baryonic feedback, galactic wind bubbles typically provide energy-independent secondary flux suppression at a level of about 10%. The observed flux suppression effect has to be due to the cosmological magnetic field in the voids. This might not be the case for the special case when the primary γ-ray source has a hard intrinsic γ-ray spectrum that peaks in the energy range above 50 TeV. In this case, the observational data may be strongly affected by the magnetized bubble that is blown by the source host galaxy.

Original languageEnglish
Article numberA80
JournalAstronomy and Astrophysics
Volume660
DOIs
Publication statusPublished - 1 Apr 2022

Keywords

  • Gamma rays: general
  • Intergalactic medium
  • ISM: jets and outflows
  • Magnetic fields
  • Magnetohydrodynamics (MHD)

OECD FOS+WOS

  • 1.05 EARTH AND RELATED ENVIRONMENTAL SCIENCES
  • 1.03 PHYSICAL SCIENCES AND ASTRONOMY

Fingerprint

Dive into the research topics of 'Account of the baryonic feedback effect in γ -ray measurements of intergalactic magnetic fields'. Together they form a unique fingerprint.

Cite this