Abelian Schur groups of odd order

Ilia Nikolaevich Ponomarenko, Grigory Konstantinovich Ryabov

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

A finite group G is called a Schur group if any Schur ring over G is associated in a natural way with a subgroup of Sym(G) that contains all right translations. It is proved that the group C3 × C3 × Cp is Schur for any prime p. Together with earlier results, this completes a classification of the abelian Schur groups of odd order.

Original languageEnglish
Pages (from-to)397-411
Number of pages15
JournalСибирские электронные математические известия
Volume15
Publication statusPublished - 1 Jan 2018

Keywords

  • Permutation groups
  • Schur groups
  • Schur rings

OECD FOS+WOS

  • 1.01 MATHEMATICS

Fingerprint

Dive into the research topics of 'Abelian Schur groups of odd order'. Together they form a unique fingerprint.

Cite this