PMP, (co)adjoint representation, and normal geodesics, of left-invariant (sub-)Finsler metric on Lie groups

Berestovskii Valerii Nikolaevich, Zubareva Irina Aleksandrovna

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

On the ground of origins of the theory of Lie groups and Lie algebras, their (co)adjoint representations, and the Pontryagin maximum principle for the time-optimal problem are given an independent foundation for methods of geodesic vector field to search for normal geodesics of left-invariant (sub-)Finsler metrics on Lie groups and to look for the corresponding locally optimal controls in (sub-)Riemannian case, as well as some their applications.

Translated title of the contributionПМП, (ко)присоединённое представление и нормальные геодезические левоинвариантных (суб)финслеровых метрик на группах Ли
Original languageEnglish
Pages (from-to)43-64
Number of pages22
JournalChebyshevskii Sbornik
Volume21
Issue number2
DOIs
Publication statusPublished - 1 Feb 2020

State classification of scientific and technological information

  • 27 MATHEMATICS

Fingerprint Dive into the research topics of 'PMP, (co)adjoint representation, and normal geodesics, of left-invariant (sub-)Finsler metric on Lie groups'. Together they form a unique fingerprint.

Cite this