About the whole behavior of trajectories of Darboux systems with cubic nonlinearities

Evgenii Pavlovich Volokitin, Vladimir Mikhaiĭlovich Cheresiz

Research output: Contribution to journalArticlepeer-review

Abstract

We study the local and global behavior of trajectories of the differential systems of the form x˙ = x + P3(x, y); y˙ = y + Q3(x, y) where P3(x, y) and Q3(x, y) are homogeneous cubic polynomials with a common factor.

Translated title of the contributionО поведении в целом траекторий систем Дарбу с кубическими нелинейностями
Original languageEnglish
Pages (from-to)1463-1484
Number of pages22
JournalСибирские электронные математические известия
Volume15
DOIs
Publication statusPublished - 1 Jan 2018

Keywords

  • polynomial systems
  • singular points
  • Poincare equator
  • phase portraits

OECD FOS+WOS

  • 1.01 MATHEMATICS

Fingerprint Dive into the research topics of 'About the whole behavior of trajectories of Darboux systems with cubic nonlinearities'. Together they form a unique fingerprint.

Cite this