Dynamics of the cubic Darboux systems

Volokitin Evgenii Pavlovich, Cheresiz Vladimir Mikhaiĭlovich

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

We study the local and global behavior of the trajectories of the differential systems of the form x˙ = x+p3(x, y), y˙ = y+q3(x, y) where p3(x, y), q3(x, y) are relatively prime homogeneous cubic polynomials.

Translated title of the contributionДинамика кубических систем типа Дарбу
Original languageEnglish
Pages (from-to)889-902
Number of pages14
JournalСибирские электронные математические известия
Volume14
DOIs
Publication statusPublished - 1 Jan 2017

Keywords

  • polynomial systems
  • singular points
  • Poincare equator
  • phase portraits

OECD FOS+WOS

  • 1.01 MATHEMATICS

Fingerprint

Dive into the research topics of 'Dynamics of the cubic Darboux systems'. Together they form a unique fingerprint.

Cite this